Q. The sum of three consecutive terms in A.P. is 24 product is 440, find the terms. Solution: Let us assume that the numbers are a-d, a, a+d Given, (a-d)+a+(a+d)=24 ⇒3a=24 ⇒a=24/3 ⇒a=8 and (a-d)*a*(a+d)=440 ⇒(8-d)*8*(8+d)=440 ⇒(8-d)(8+d)=440/8 ⇒8²-d²=55 (since (a+b)(a-b)=a²-b²) ⇒64-d²=55 ⇒-d²=55-64 ⇒-d²=-9 ⇒d²=9 ⇒d²=3² ⇒d=±3 If d=3, then the numbers are 8-3,8,8+3 => 5,8,11 If d=-3, then the numbers are 8-(-3), 8, 8+(-3)=>8+3, 8, 8-3 =>11, 8, 5
Comments
Post a Comment